Canard Explosion Near Non-Liénard Type Slow–Fast Hopf Point
نویسندگان
چکیده
منابع مشابه
Food chain chaos with canard explosion.
The "tea-cup" attractor of a classical prey-predator-superpredator food chain model is studied analytically. Under the assumption that each species has its own time scale, ranging from fast for the prey to intermediate for the predator and to slow for the superpredator, the model is transformed into a singular perturbed system. It is demonstrated that the singular limit of the attractor contain...
متن کاملFlow Curvature Method applied to Canard Explosion
The aim of this work is to establish that the bifurcation parameter value leading to a canard explosion in dimension two obtained by the so-called Geometric Singular Perturbation Method can be found according to the Flow Curvature Method. This result will be then exemplified with the classical Van der Pol oscillator.
متن کاملAsymptotic expansion of planar canard solutions near a non-generic turning point
This paper deals with the asymptotic study of the so-called canard solutions, which arise in the study of real singularly perturbed ODEs. Starting near an attracting branch of the ”slow curve”, those solutions are crossing a turning point before following for a while a repelling branch of the ”slow curve”. Assuming that the turning point is degenerate (or non-generic), we apply a correspondence...
متن کاملCanard-Like Explosion of Limit Cycles in Two-Dimensional Piecewise-Linear Models of FitzHugh-Nagumo Type
We investigate the mechanism of abrupt transition between small and large amplitude oscillationsin fast-slow piecewise-linear (PWL) models of FitzHugh-Nagumo (FHN) type. In the context ofneuroscience, these oscillatory regimes correspond to subthreshold oscillations and action potentials(spikes) respectively. The minimal model that shows such phenomenon has a cubic-like nullclin...
متن کاملAndronov-Hopf bifurcation of Higher codimensions in a LiéNard System
Consider a polynomial Liénard system depending on three parameters a, b, c and with the following properties: (i) The origin is the unique equilibrium for all parameters. (ii). If a crosses zero, then the origin changes its stability, and a limit cycle bifurcates from the equilibrium. We investigate analytically this bifurcation in dependence on the parameters b and c and establish the existenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Dynamics and Differential Equations
سال: 2018
ISSN: 1040-7294,1572-9222
DOI: 10.1007/s10884-018-9645-3